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Abstract Fluid flow in a circular pipe and a slider bearing was computationally simulated by finite
element methods and probabilistically evaluated in view of the several uncertainties in the
performance parameters. Cumulative distribution functions and sensitivity factors were computed
for the flow rate and load bearing capacity of the slider bearing due to the several random
variables. These results can be used to quickly identify the most critical design variables in order to
optimize the design and make it cost effective. The analysis leads to the selection of the appropriate
measurements to be used in fluid flow and to the identification of both the most critical
measurements and parameters.

Introduction
Conventional engineering design methods are deterministic. Machines and
their components are considered as ideal systems and parameter optimizations
provide single point estimates of the system behavior or response. Probabilistic
engineering design uses probability distributions of design parameters instead
of mean or nominal values only. This will enable a designer for a specific
reliability and hence maximize safety, quality and economy. A probabilistic
design system was developed by Fox (1994) at Pratt and Whitney for the
purpose of integrating deterministic design methods with probabilistic design
techniques. Here, two different approaches were used for estimating
uncertainty. A Monte Carlo approach was used on design codes that were
judged to run relatively quickly. For more computationally intensive design
codes, a second order response surface model in conjunction with Box-Behnken
design experiments was used and then a Monte Carlo simulation was executed.
Several researchers at NASA Glenn Research Center have applied the
probabilistic design approaches to turbine engines and related systems.
Chamis (1986a) developed a Probabilistic Structural Analysis Method (PSAM)
using different distributions such as the Weibull, normal, log-normal etc. to
describe the uncertainties in the structural and load parameters or primitive
variables. Nagpal et al. (1987) presented a probabilistic study of turbopump
blades of the Space Shuttle Main Engine (SSME). They found that random
variations or uncertainties in geometry have statistically significant influence
on the response variable and random variations in material properties have
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statistically insignificant effects. Chamis (1986b) summarized the usefulness
and importance of the probabilistic approach, especially for turbopumps. Gorla
et al. (2003) computationally simulated and probabilistically evaluated a
combustor liner in view of several uncertainties in the aerodynamic, structural,
material and thermal variables that govern the combustor liner.

To cost effectively accomplish the design task, we need to formally quantify
the effect of uncertainties (variables) in the design. Probabilistic design is one
effective method to formally quantify the effect of uncertainties. In the present
paper, a probabilistic analysis is presented for the influence of measurement
accuracy and a priori fixed parameter variations on the random variables for
fluid flow in a circular pipe and a slider bearing. Small perturbation approach is
used for the finite element methods to compute the sensitivity of the response to
small fluctuations of the random variables present. The result is a parametric
representation of the response in terms of a set of random variables with
known statistical properties, which can be used to estimate the characteristics
of the selected response variables such as flow rate and load carrying capacity
of the bearing.

Analysis
Let us consider the flow of a fluid with viscosity m through a circular pipe.
A negative pressure gradient ›p=›z drives the flow in the positive z direction
with axial velocity w(x, y). The governing differential equation for the velocity
profile is given by
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The no slip boundary condition is given by

wðx; yÞ ¼ 0 at r ¼ ðx2 þ y2Þ1=2 ¼ R ð2Þ

The other boundary conditions are

›w

›x
¼

›w

›y
¼ 0 at x ¼ 0 and y ¼ 0 ð3Þ

In equation (2), R is the radius of the pipe.
The volume flow rate through the pipe is given by

Q ¼

ZZ
A

w dA ¼ 2
pR 4

8m

›p

›z

� �
ð4Þ

The second example to be considered is the flow of a viscous fluid in a slider
bearing. The differential equation for the pressure p(x, y) distribution in the
bearing is given by the Reynolds equation:
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where h¼ h(x) ¼ oil film thickness and U ¼ slider velocity
The boundary conditions are given by:

p ¼ p0 ¼ atmospheric pressure along all the four sides ð6Þ

The force generated by the fluid film or the bearing load is given by

F ¼

ZZ
A

p · dA ð7Þ

Finite element solution
Let us consider a two-dimensional partial differential equation of the form

›
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þ Pðx; yÞT þ Qðx; yÞ ¼ 0: ð8Þ

where T is the field variable to be determined.
The above equation is valid over an area A. We assume that on a portion of

the boundary L1, T ¼ T0 ðx; yÞ:
On the remainder of the boundary, labeled L2, the general derivative

boundary condition is specified in the form

Kxðx; yÞ
›T

›X
nx þ Kyðx; yÞ

›T

›y
ny þ aðx; yÞT þ bðx; yÞ ¼ 0: ð9Þ

Here, nx and ny are direction cosines of the outward normal to L2. The form of
the functional may be written as

I ðTÞ ¼

ZZ
A
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For a simplex two-dimensional element, we have extremized the above
functional with respect to the unknowns nodal values of the field variable. The
resultant element matrices are then obtained from the following relation:
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The element matrix [B ](e) and the element column [C ](e) may be written as
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The element matrices were then assembled into the global matrices and
vectors. The prescribed boundary conditions were implemented at the
appropriate nodal points. The algebraic equations in the global assembled form
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were solved by the Gauss elimination procedure. These details may be found in
the work of Allaire (1985).

Perturbation of the fluid mechanics problem
The finite element solution for the fluid mechanics problem may be reduced to
the following equation in the unperturbed state:

½B�½T� ¼ ½C� ð13Þ

The perturbed problem involving small fluctuations of the random variables
may be written as

½B̂�½T̂� ¼ ½Ĉ� ð14Þ

where

½B̂� ¼ ½B� þ d½B�

½T̂� ¼ ½T � þ d½T �

½Ĉ� ¼ ½C � þ d½C �

ð15Þ

Therefore, we may write equation (10) as

½B�d½T � ¼ ½C�2 ½B̂�½T �2 d½B� d½T �

ø dxi
›½C �

›xi

2 dxi
›½B�

›xi

½T �

ð16Þ

In the last step in equation (16), we ignored the second order term d½B� · d½T�:
Here, xi are the random variables. A simple form of the iterative algorithm is
given by:

½B�d½T̂�nþ1 ¼ ½Ĉ�2 ½B̂�½T̂�n ð17Þ

½T̂�nþ1 ¼ ½T̂�n þ d½T̂�nþ1 ð18Þ

In order to start the iteration, we may use

½T̂�0 ¼ ½T �

The effect of variable properties may be included in equation (17). From
equation (17), we may write:

½B�d½T̂�n ¼ ½Ĉ�2 ½B̂�½T̂ �n21 ð19Þ

from equations (17) and (19) we may write

Probabilistic
finite element

analysis

853



½B�d½T̂ �nþ1 ¼ ½B�d½T̂�n 2 ½B̂�d½T̂�n ð20Þ

From equation (20), we may write

d½T̂�nþ1 ¼ ½A�d½T̂�n ð21Þ

where ½A� ¼ ½I �2 ½B�21 ½B̂� is the amplification matrix. The iterative process
will remain stable if the spectral radius of the amplification matrix [A] is less
than unity. This will be true when the imposed perturbations on the original
element matrix are small.

Probability functions
Attention is now directed to the implementation of this probabilistic
formulation in the design process. The necessary transition from the
mathematical formulation above to a probabilistic model that yields the
information relevant for multi-variate decision-making is described in this
section. There are two alternatives for this task.

Joint probability model
The first joint probability density function (PDF) introduced here is an
analytical probability model for criteria whose univariate distributions and
their corresponding means and standard deviations are known. All necessary
information for the model can be generated by the traditional probabilistic
design process, using its output of univariate criterion distributions.
A particular model for two criteria with normal distributions, has been
introduced by Garvey and Tuab. Garvey further generated models for two
criteria with combinations of normal and lognormal distributions, which are
summarized in the work of Sundararajan (1995).

f XY ðx; yÞ ¼
1

2psXsY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 r2

p exp
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2r2 2 2
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22r
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� �
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sY

� �
þ

y 2 mY

sY

� �2
#) ð22Þ

Note that the only information needed for the joint probability model consists
of the means mX and mY, the standard deviations sX and sY, and the correlation
coefficient r for the criteria X and Y. The model variables, x and y, are defined
over the interval of all possible criterion values. The advantage of this model is
the limited information needed, which makes it very flexible for use and
application. For example, if only expert knowledge and no simulation/modeling
is available in the early stages of design, educated guesses for the means,
standard deviations, and the correlation coefficient can be used to execute the
joint probability model. It also lends itself to use in combination with
increasingly important fast probability integration (FPI) techniques.
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Implementation of probabilistic procedure using FPI. FPI is a probabilistic
analysis tool that implements a variety of methods for probabilistic analysis.
The procedure follows the steps given below:

(1) identify the independent and uncorrelated design variables with
uncertainties.

(2) quantify the uncertainties of these design variables with probability
distributions based on expert opinion elicitation, historical data or
benchmark testing.

(3) it is required that there is a response function that defines the
relationship between the response and the independent variables.

(4) the FPI uses the responses generated to compute the cumulative
distribution functions (CDF)/PDF and the corresponding sensitivities of
the response.

Several methods are available in the FPI to compute a probabilistic
distribution. In addition to obtaining the CDF/PDF of the response, the FPI
provides additional information regarding the sensitivity of the response with
respect to the primitive variables. They provide valuable information in
controlling the scatter of the response variable. The random primitive variable
with the highest sensitivity factor will yield the biggest payoff in controlling
the scatter in that particular response variable. Such information is very useful
to the test/design engineer in designing or interpreting the measured data.

Results and discussion
The history of the iterative algorithm is illustrated by means of two examples
involving fluid flow through a circular pipe and slider bearing. We consider a
458 solution region for the circular pipe by considering of the symmetry.
We assume that the fluid is water. The problem parameters are the following:

›p

›z
¼ 234; 474 Pa

m ¼ 1; 080 £ 1026 N s=m2

R ¼ 2:54 £ 1025 m

Figure 1 shows the solution region divided into nodes and elements. All
random variables were assumed to be independent. A scatter of ^10 percent
was specified for all the primitive variables. Normal distribution was assumed
for all random variable scatters.

The perturbed responses corresponding to the standard deviations from the
mean for each of the random variables were computed. The CDF and the
sensitivity factors of the volumetric flow rate were evaluated. CDF for the flow
rate is shown in Figure 2. The sensitivity factors for the flow rate versus the
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primitive random variables are shown in Figure 3. We observe that the pipe
radius has much of influence on volumetric flow rate. The sensitivities vary
with the probability level because of the non-linearity of the problem. The
viscosity and pressure gradients have much impact on flow rate at lower
probability levels. Figure 4 shows the cumulative probability versus sensitivity

Figure 1.
Finite element model for
pipe flow

Figure 2.
Cumulative probability
of the volumetric flow
rate
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factors. It is clear from this plot that the pipe geometry has the most impact on
flow rate.

Figure 5 shows the nodes and elements of the plane slider. The problem
parameters are:

Length of the slider (L) ¼ 0.0762 m

Width of the slider (W ) ¼ 0.0513 m

Slider velocity (U ) ¼ 27.94 m/s

Figure 3.
Sensitivity factors versus

random variables

Figure 4.
Cumulative probability

versus sensitivity factors
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Oil viscosity (m) ¼ 2,160 £ 1025 N s/m2

Oil film thickness (h)¼ 0.0000762 m

All random variables were assumed to be independent. A scatter of ^10
percent was specified for all the variables. Normal distribution was assumed
for all random variable scatters.

The perturbed responses corresponding to the standard deviations from the
mean for each of the random variables were computed. The CDF and the
sensitivity factors of the bearing load were evaluated. CDF for the bearing load
is shown in Figure 6. The sensitivity factors for the load carrying capacity of
the bearing versus the primitive random variables are shown in Figure 7. We
observe that the oil film thickness has much influence on the force generated by
the oil film at higher probability levels. The geometric variables of the slider
bearing have equally important impact at lower probability levels. Figure 8
shows the cumulative probability versus sensitivity factors. It is clear from this
plot that the film thickness has the most impact on the load carrying capacity
of the bearing.

Conventional engineering design methods are deterministic. The
components of a machine are considered as ideal systems and parameter
optimization provide single point estimates of the system response. In reality,
many engineering systems are stochastic where a probability assessment of the
results is required. Probabilistic engineering design analysis assumes
probability distributions of design parameters, instead of mean values only.
This enables the designer to design for a specific reliability and hence
maximize safety, quality and cost. The approaches for incorporating the

Figure 5.
Finite element model for
slider bearing
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probabilistic effects in design include the use of factors of safety, use of the
worst-case design and use of probabilistic design. Utilizing the uncertainties in
the estimations, deterministic engineering design uses factors of safety to
assure that the nominal operational conditions does not come too close to the
point where the system will fail. The approximation of minimum properties
and maximum loads known as the absolute worst case gives information about

Figure 7.
Sensitivity factors versus

random variables

Figure 6.
Cumulative probability

of bearing load capacity
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this critical point. This approach limits the optimization capability of a system
and fails to provide important information about the system lifetime.

The design procedures of the advanced aerospace vehicles must account for
uncertainties calculating the risk or reliability. These calculations will involve
the probabilistic analysis. When compared with traditional factor of safety
methods, probabilistic methods require additional inputs, but provide higher
quality outputs. The uncertain or random variables are assumed to have a
PDF. The output will be a PDF for the response quantities.

A robust design is one that has been created with a system of design tools
that reduce product or process variability while guiding the performance
toward an optimal setting. Robustness means achieving excellent performance
under a wide range of operating conditions. All engineering systems function
reasonably well under ideal conditions, but robust designs continue to function
well when the conditions are non-ideal. Analytical robust design attempts to
determine the values of design parameters which maximize the reliability of the
product without tightening the material or environmental tolerances.
Probabilistic design and robust design go hand in hand. In order to
determine the domains of stability, the system has to be analyzed
probabilistically.

Concluding remarks
In this paper, a non-deterministic method has been developed to support
reliability-based design. The novelty in the paper is the probabilistic evaluation
of the finite element solution for fluid flow. CDF and sensitivity factors were
computed for volumetric flow rate in a pipe and load carrying capacity of a
slider bearing due to the random variables. Evaluating the probability of risk

Figure 8.
Cumulative probability
versus sensitivity factors
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and sensitivity factors will enable the identification of the most critical design
variable in order to optimize the design and make it cost effective.
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